

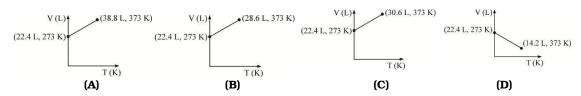
Date Planned : / /	Daily Tutorial Sheet-4	Expected Duration : 90 Min
Actual Date of Attempt : / /	JEE Advanced (Archive)	Exact Duration :

46.	An evacuated	l glass ve	essel weighs	50 gm	when e	mpty,	148 gı	m when	filled	with	a liquid of	density	0.98
	gm/ml and 5	50.5 gm	when filled	with a	ın ideal	gas at	t 760	mm H	g at 3	800 K.	Calculate	molar	mass
	of gas.											(1	998)

	gm/ml and 50.5 gm when filled with an ideal gas at 760 mm Hg at 300 K. Calculate mo	olar mass
	of gas.	(1998)
47 .	Statement I: The value of vander Waals' constant ' α ' is larger for ammonia than for nitrogen.	
	Statement II : Hydrogen bonding is present in ammonia.	(1998)

- Statement-I is True, Statement-II is True and Statement-II is a correct explanation for (A) Statement-I
- Statement-I is True, Statement-II is True and Statement-II is NOT a correct explanation for **(B)** Statement-I
- (C) Statement-I is True, Statement-II is False
- (D) Statement-I is False, Statement-II is True
- Using Van der Waal's equation, calculate the constant a when two moles of a gas confined in a four litre 48. flask exert a pressure of 11.0 atm at a temperature of 300K. The value of b is c $0.05 L \text{ mol}^{-1}$. (1998)
- 49. Calculate the pressure exerted by one mole of CO_2 gas at 273 K if the Van der Waals' constant a = 3.592 $\mathrm{dm}^6\,\mathrm{atm}\,\mathrm{\,mol}^{-2}$. Assume that the volume occupied by $\mathrm{CO}_2\,\mathrm{molecules}$ is negligible. (2000)
- **50**. The compressibility of a gas is less than unity at STP. Therefore, (2000)
 - (A) $V_m > 22.4 \text{ litres}$ $\textbf{(B)} \hspace{0.5cm} V_m < 22.4 \, litres$ $V_{\rm m} = 22.4 \, \rm litres$ $V_m = 44.8 \, \text{litres}$ **(D)**
- The rms velocity of hydrogen is $\sqrt{7}$ times the rms velocity of nitrogen. If T is the temperature of the gas, **51**.
 - $T_{H_2} > T_{N_2}$ (C) $T_{H_2} < T_{N_2}$ (A) **(B)** $T_{H_0} = \sqrt{7} T_{N_0}$ $T_{H_2} = T_{N_2}$ (D)
- **52**. Statement I: The pressure of a fixed amount of an ideal gas is proportional to its temperature Statement II: Frequency of collisions and their impact both increase in proportion to the square root of (▶) temperature.
 - Statement-I is True, Statement-II is True and Statement-II is a correct explanation for (A) Statement-I.
 - Statement-I is True, Statement-II is True and Statement-II is NOT a correct explanation for (B) Statement-I.
 - (C) Statement-I is True, Statement-II is False.
 - **(D)** Statement-I is False, Statement-II is True.
- **53**. The root mean square velocity of an ideal gas at constant pressure varies with density (d) as: (2001)
- d^2 \sqrt{d} $1/\sqrt{d}$ (A) (C) (D) (B)
- **54**. The compression factor (compressibility factor) for one mole of a Van der Waal's gas at 0°C and 100 atm pressure is found to be 0.5. Assuming that the volume of a gas molecule is negligible, calculate the van (2001) der Waals' constant 'a'.

- **55.** The density of the vapour of a substance at 1 atm pressure and 500 K is 0.36 kg m^{-3} . The vapour effuses through a small hole at a rate of 1.33 times faster than oxygen under the same condition. **(2002)**
 - (i) Determine, (a) molecular weight (b) molar volume (c) compression factor (Z) of the vapour and (d) which forces among the gas molecules are dominating, the attractive or the repulsive?
 - (ii) If the vapour behaves ideally at 1000 K, determine the average translational kinetic energy of a molecule.
- **56.** When the temperature is increased, surface tension of water:


(2002)

(A) increases

(B) decreases

(C) remains constant

- **(D)** shows irregular behavior
- **57.** Which of the following volume (V) –temperature (T) plots represents the behaviour of one mole of an ideal gas at one atmospheric pressure? (2002)

58. The average velocity of gas molecules is 400 ms^{-1} , find the rms velocity of the gas.

(2003)

59. Positive deviation from ideal behaviour takes place because of :

(2003)

- (A) molecular interaction between atoms and PV / nRT > 1
- **(B)** molecular interaction between atoms and PV / nRT < 1
- (C) finite size of atoms and PV / nRT > 1
- (D) finite size of atoms and PV / nRT < 1
- 60. The root mean square velocity of one mole of a monoatomic gas having molar mass M is $v_{r.m.s}$. The relation between the average kinetic energy (E) of the gas and $v_{r.m.s}$ is: (2004)

$$\textbf{(A)} \qquad \quad v_{r.m.s} = \sqrt{\frac{3E}{2M}} \quad \textbf{(B)} \qquad \quad v_{r.m.s} = \sqrt{\frac{2E}{3M}} \quad \textbf{(C)} \qquad \quad v_{r.m.s} = \sqrt{\frac{2E}{M}} \quad \quad \textbf{(D)} \qquad \quad v_{r.m.s} = \sqrt{\frac{E}{3M}} \quad \quad \textbf{(D)} \qquad \quad v_{r.m.s} = \sqrt{\frac{E}{3M}} \quad \quad \textbf{(D)} \qquad \quad v_{r.m.s} = \sqrt{\frac{E}{M}} \quad \quad v_{r.m.s} =$$